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Abstract. Nominal stability of a quasi-infinite horizon nonlinear model predictive
control (QIH-NMPC) scheme is obtained by an appropriate choice of the termi-
nal region and the terminal penalty term. This paper presents a new method to en-
large the terminal region, and therefore the domain of attraction of the QIH-NMPC
scheme. The proposed method applies a parameter-dependent terminal controller.
The problem of maximizing the terminal region is formulated as a convex optimiza-
tion problem based on linear matrix inequalities. Compared to existing methods us-
ing a linear time-invariant terminal controller, the presented approach may enlarge
the terminal region significantly. This is confirmed via simulations of an example
system.

Keywords: Nonlinear Model predictive control; Terminal invariant sets; Linear dif-
ferential inclusion; Linear matrix inequality.

1 Introduction

Nonlinear model predictive control (NMPC) is a control technique capable of deal-
ing with multivariable constrained control problems. One of the main stability re-
sults for NMPC is the quasi-infinite horizon approach [1, 2]. A remainding issue
for QIH-NMPC is how to enlarge the terminal region since the size of the terminal
region affects directly the size of the domain of attraction for the nonlinear opti-
mization problem. Many efforts have been made to determine the terminal penalty
term and the associated terminal controller such that the terminal region is enlarged.
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For nonlinear systems, using either a local polytopic linear differential inclusions
(LDI) representation [3] or a local norm-bounded LDI representation [4], the ter-
minal region is obtained by solving an linear matrix inequality (LMI) optimization
problem. In [5], a local LDI representation is used as well, and a polytopic terminal
region and an associated terminal penalty are computed. Using support vector ma-
chine learning [6], freedom in the choice of the terminal region and terminal penalty
needed for asymptotic stability is exploited in [6].

Here, we generalize the scheme in [7]. A more general polytopic LDI description
is used to capture the nonlinear dynamics and the condition of twice continuous
differentiability of the nonlinear system is relaxed to continuous differentiability.
The approach results in a parameter-dependent terminal control law. Compared with
the use of time-invariant linear state feedback laws, the proposed approach provides
more freedom in the choice of the terminal region and terminal cost needed for
asymptotic stability. Thus a larger terminal region is obtained.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the QIH-NMPC scheme. The condition to calculate terminal region of QIH-NMPC
based on linear differential inclusions and the optimization algorithm to maximize
the terminal region are proposed in Section 3 and 4. The efficacy of the algorithm is
illustrated by a numerical example in Section 5.

2 Preliminaries

Consider the smooth nonlinear control system

ẋ(t) = f (x(t),u(t)), x(t0) = x0, t ≥ t0 (1a)

z(t) = g(x(t),u(t)), (1b)

subject to z(t) ∈ Z ⊂ R
p, ∀t ≥ t0, (2)

where x(t) ∈ R
n, u(t) ∈ R

m are the state and input vector, and z(t) is the output
vector. Denote X and U as the projection of the output vector space Z to the state
vector space and the input vector space, respectively.

Fundamental assumptions of (1) are as follows:

A0) The nonlinear fuctions f and g are continuously differentiable, and satisfy
f (0,0) = 0 and g(0,0) = 0. The equilibrium is a hyperbolic fixed point.

A1) System (1) has a unique solution for any initial condition x0 ∈ X and any
piecewise right-continuous input function u(·) : [0,Tp] −→U ;

A2) U ⊂R
m and X ⊆R

n are compact and the point (0,0) is contained in the interior
of X ×U .

For the actual state x(t), the optimization problem in the QIH-NMPC is formulated
as follows [2, 8]:

min
ū(·)

J
(
x(t), ū(·)) (3)

subject to



Enlarging the Terminal Region of NMPC 71

˙̄x = f (x̄, ū), x̄(t;x(t)) = x(t), (4a)

z̄(τ) ∈ Z, τ ∈ [t, t + Tp], (4b)

x̄(t + Tp; x̄(t)) ∈ Ω(α), (4c)

where J(x(t), ū(τ,x(t))) =V (x̄(t +Tp);x(t))+
∫ t+Tp

t F
(
x̄(τ;x(t)), ū(τ)

)
dτ , Tp is the

prediction horizon, x̄(·;x(t)) denotes the state trajectory starting from the current
state x(t) under the control ū(t). The pair (x̄, ū) denotes the optimal solution to
the open-loop optimal control problem (3). F(·, ·) is the stage cost satisfying the
following condition:

A3)F(x,u) : R
n ×U → R is continuous and satisfies F(0,0) = 0 and F(x,u) > 0,

∀(x,u) ∈ R
n ×U \ {0,0}.

In (4), the set Ω(α) is a neighborhood of the origin and defined as a level set of a
positive definite function V (·) as follows

Ω(α) := {x ∈ Rn | V (x) ≤ α}. (5)

Moreover, Ω(α) and V (x) are said to be the terminal region and the terminal penalty
respectively, if there exists a continuous local controller u = κ(x) such that the fol-
lowing conditions are satisfied:

B0)Ω(α) ⊆ X ,
B1)g(x,κ(x)) ∈ Z, for all x ∈ Ω(α),
B2)V (x) satisfies inequality

∂V (x)
∂x

f (x,κ(x))+ F(x,κ(x)) ≤ 0, ∀x ∈ Ω(α). (6)

Clearly, Ω(α) has the following additional properties [8]:

• The point 0 ∈ R
n is contained in the interior of Ω(α) due to the positive definite-

ness of V (x) and α > 0,
• Ω(α) is closed and connected due to the continuity of V in x.
• Since (6) holds, Ω(α) is invariant for the nonlinear system (1) controlled by local

control u = κ(x).
The following stability results can be established:

Lemma 1. [8] Suppose that

(a)assumptions A0)-A3) are satisfied,
(b)for the system (1), there exist a locally asymptotically stabilizing controller u =

κ(x), a continuously differentiable, positive definite function V (x) that satisfies
(6) for ∀x ∈ Ω(α) and a terminal region Ω(α) defined by (5),

(c)the open-loop optimal control problem described by (3) is feasible at time t = 0.

Then, the closed-loop system is nominally asymptotically stable with the region of
attraction D being the set of all states for which the open-loop optimal control prob-
lem has a feasible solution.
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3 Enlarging the Terminal Region of Quasi-infinite Horizon
NMPC

In this section we derive a sufficient condition for the calculation of the terminal
region and a linear parameter-dependent terminal control law based on a polytopic
differential inclusion description of the nonlinear system (1). The constraints under
consideration are

−ẑk ≤ zk(t) ≤ ẑk, k = 1,2, . . . , p, t ≥ t0, (7)

where zk(·) is the kth element of the outputs, and ẑk is positive scalar.
We choose the stage cost F(x,u) = xT Qx + uT Ru with 0 ≤ Q ∈ Rn×n and

0 ≤ R ∈m×m. Suppose that the Jacobian linearization of the system (1) at the ori-
gin is stabilizable. Then a quadratic Lyapunov function and a local region round
the equilibrium defined by the level set of the Lyapunov function exist [9] which
serve as terminal penalty and terminal region, respectively. Therefore, we choose
the terminal region Ω(α,P) := {x ∈ Rn|xT Px ≤ α} which represents an ellipsoid.

3.1 Polytopic Linear Differential Inclusions

Suppose that for each x,u and t there is a matrix G(x,u, t) ∈ Π such that
[

f (x,u)
g(x,u)

]
= G(x,u, t)

[
x
u

]
(8)

where Π ⊆ R(n+p)×(n+p). If we can prove that every trajectory of the LDI defined
by Π has some property, then we have proved that every trajectory of the nonlinear
system (1) has this property. Conditions that guarantee the existence of such a G are

f (0,0) = 0, g(0,0) = 0, and

[
∂ f
∂x

∂ f
∂u

∂g
∂x

∂ f
∂u

]

∈ Π for all x,u, t [10].

The set Π is called a polytopic linear differential inclusion (PLDI) if Π is de-
scribed by a list of its vertices [10]

Ω = Co

{[
A1 B1

C1 D1

]
,

[
A2 B2

C2 D2

]
, . . . ,

[
AN BN

CN DN

]}
, (9)

where

[
Ai Bi

Ci Di

]
, i = 1,2, . . . ,N are vertex matrices of the set Π , and N is the number

of vertex matrices. Then the nonlinear system (1) can be represented in the form of
a linear parameter-varying dynamic system [11]

ẋ(t) =
N

∑
i=1

βi(λ )(Aix(t)+ Biu(t)), (10a)

z(t) =
N

∑
i=1

βi(λ )(Cix(t)+ Diu(t)) (10b)
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where λ ∈ R
nλ is the time-variant parameter vector, and βi(λ ) are non-negative

scalar continuous weighting functions satisfying βi(λ ) > 0 and ∑N
i=1 βi(λ ) = 1. In

the following we denote β (λ ) =
[
β1(λ ) β2(λ ) . . . βN(λ )

]T
. Suppose that Kj ∈

R
m×n is a time-invariant feedback gain of the ith vertex system, the control law

for the whole PLDI system can be inferred as a weighted average of controllers
designed for all vertices, i.e.,

κ(λ ) =
N

∑
j=1

β j(λ )Kj. (11)

Substituting (11) into (10), we obtain the closed-loop system

ẋ(t) = Acl
(
β (λ )

)
x(t), (12a)

z(t) = Ccl
(
β (λ )

)
x(t), (12b)

with Acl
(
β (λ )

)
=

N
∑

i=1

N
∑
j=1

βi(λ )β j(λ )(Ai + BiKj), Ccl
(
β (λ )

)
=

N
∑

i=1

N
∑
j=1

βi(λ )β j(λ )

(Ci + DiKj).

3.2 Terminal Region of NMPC Based on PLDI

Based on the PLDI of nonlinear system (1), the inequality condition (6) can be for-
mulated as a linear matrix inequality (LMI) problem. This is attractive since com-
putationally efficient methods to solve such problems are available [10, 11].

Theorem 1. For system (12), suppose that there exist a matrix X > 0 and matrices
Yj such that

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )

⎡

⎣
AiX + BiYj +(AiX + BiYj)T X Y T

i
X −Q−1 0
Yj 0 −R−1

⎤

⎦ ≤ 0, (13)

Then, with κ(λ ) = ∑N
j=1 β j(λ )Kj as in (11) and V (x) := xT Px, where P = X−1 and

Kj = YjX−1, the inequality (6) is satisfied.

Proof: By substituting P = X−1 and Yj = KjX in (13) and performing a congruence
transformation with the matrix {X−1, I, I}, we obtain

⎡

⎣
Acl(λ )T P+ PAcl(λ ) X κ(λ )T

X −Q−1 0
κ(λ ) 0 −R−1

⎤

⎦ ≤ 0,

It follows from the Schur complement that the inequalities (13) are equivalent to

Acl(λ (t))T P + PAcl(λ (t))+ Q+ κ(λ (t))T Rκ(λ (t)) ≤ 0. (14)

We choose V (ξ ) = ξ T Pξ as a Lyapunov function candidate. The time derivative of
V (x) along the trajectory of (12) is given as follows:
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dV (x(t))
dt

= ẋ(t)T Px(t)+ x(t)T Pẋ(t)

= x(t)T
{ N

∑
i=1

N

∑
j=1

hi(λ )h j(λ )
(
(Ai + BiKj)T P+ P(Ai + BiKj)

)}
x(t)

= x(t)T
{

Acl(λ )T P+ PAcl(λ )
}

x(t) (15)

Using (14), we have dV (x(t))
dt ≤ −x(t)T Qx(t)− x(t)T κ(λ )T Rκ(λ )x(t). Thus the in-

equality (6) holds, and κ(λ ) is the associated terminal control law. �

Now we derive conditions such that the constraints (7) are satisfied by the controller
κ(λ ) for any x ∈ Ω(P,α).

Theorem 2. If X and Yj, j = 1,2, . . . ,N satisfy (13) and furthermore the following
matrix inequalities

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )
[

1
α ẑ2

k eT
k (CiX + DiYj)

∗ X

]
≥ 0, k = 1,2, . . . , p, (16)

hold, where ek is kth element of the basis vector in the constraint vector space, then
for any x(t) ∈ Ω(P,α), the parameter-dependent feedback law (11) controls the
system (12) satisfying the the constraint (7).

Proof: Using (12b), satisfaction of the constraints (7) requires

x(t)T (Ccl(β (λ ))T ekeT
k Ccl(β (λ ))x(t) ≤ ẑ2

k , (17)

due to x(t) ∈ Ω(P,α), which holds if

x(t)T (Ccl(β (λ ))T ekeT
k Ccl(β (λ ))x(t)

ẑ2
k

≤ x(t)T Px(t)
α

, (18)

For any x(t) 
= 0 (note that x(t) = 0 leads to z(t) = 0 and satisfaction of (7)), in-

equality (18) holds if

P
α
− (Ccl(β (λ ))T ekeT

k Ccl(β (λ ))
ẑ2

k

≥ 0. (19)

Applying the Schur Complement, the matrix inequality (19) is equivalent to

N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )
[

P ∗
eT

k (Ci + DiKj) 1
α ẑ2

k

]
≥ 0, k = 1,2, · · · , p. (20)

Performing a congruence transformation with diag(I,X) on both sides of (20), we
obtain the required inequality (16). �
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Following the above discussions, we now state the main results of this paper:

Theorem 3. Suppose that the PLDI model of the nonlinear system (1) is given
by (12). If there exist a positive definite matrix X ∈ R

n×n, matrices Yj ∈ R
m×n, j =

1,2, · · · ,N, and a scalar α > 0, independent of the unknown parameter vector β (λ )
such that (13) and (16), then the ellipsoid Ω(α,P) with P = X−1 and V (x) = xT Px
serve as a terminal region and a terminal penalty for NMPC, respectively. The as-
sociated terminal controller is κ(λ ) = ∑N

j=1 β j(λ )Kjx(t) with Kj = YjX−1.

Proof: The inequalities (13) and (16) guarantee that the nonlinear system (1) satisfy
inequality (6) and constraints (2), respectively, i.e. B1) and B2).

The positive definite matrix X ∈ R
n×n, the matrices Yj ∈ R

m×n, and the scalar
α > 0 are independent of the unknown parameter vector β (λ ). Thus Ω(α,P) is the
terminal region and V (x) is the terminal penalty of the nonlinear system, respec-
tively. �

4 Optimization of the Terminal Region

In order to reduce the functional inequalities (13) and (16) to finitely many LMIs,
we utilize the following lemma:

Lemma 2. [12] If there exist matrices Γii = Γ T
ii , Γi j = Γ T

ji , (i 
= j, i, j = 1,2, · · · ,r)
such that the matrix Λi j(1 ≤ i, j ≤ r)

Λii ≤ Γii, i = 1,2, · · · ,r, (21a)

Λi j +Λ ji ≤ Γi j +Γ T
i j , j < i, (21b)

[Γi j]r×r ≤ 0, (21c)

then the parameter matrix inequalities
r

∑
i=1

r

∑
j=1

δi(·)δ j(·)Λi j ≤ 0, (22)

are feasible, where δi(·) ≥ 0,
r
∑

i=1
δi(·) = 1,∀t, and [Γi j]r×r =

⎛

⎜
⎝

Γ11 · · · Γ1r
...

. . .
...

Γr1 · · · Γrr

⎞

⎟
⎠.

Let Ω(α,P) denote the ellipsoid centered at the origin defined by P and α . The
volume of Ω is proportional to det(αX), X = P−1 [10]. The geometric mean of the

eigenvalues [13], leading to minimization of det(αX)
1
n , where n is dimension of X ,

can be used for solving the determinant maximization problem. Define

X0 = αX , Yj0 = αYj. (23)

The inequality constraints (13), (16) can be rewritten as
N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )Li j ≤ 0, (24)
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N

∑
i=1

N

∑
j=1

βi(λ )β j(λ )Fi, j ≥ 0, k = 1,2, . . . ,m, (25)

where Li j =

⎛

⎝
Ξ X0 Y T

j0
∗ −αQ−1 0
∗ ∗ −αR−1

⎞

⎠, Fi, j =
[

ẑ2
k eT

k (CiX0 + DiYj0)
∗ X0

]
, Ξ = X0AT

i +

Y T
j0BT

i + AiX0 + BiYj0.
It follows from Lemma 2 that if there exist matrices Ti j (i, j = 1, · · · ,N) such that

Lii ≤ Tii, i = 1,2, · · · ,N, (26a)

Li j +L ji ≤ Ti j +T T
i j , j < i, (26b)

[Ti j]N×N ≤ 0, (26c)

then the inequality (6) is satisfied. Furthermore, if there exist matrices Mi j (i, j =
1,2, · · · ,N) such that

Fii ≥ Mii, i = 1,2, · · · ,N, (27a)

Fi j +F ji ≥ Mi j +M T
i j , j < i, (27b)

[Mi j]N×N ≥ 0, (27c)

then the output constraints (7) are satisfied.
Hence, the maximization problem of the ellipsoid Ω can be reformulated as

max
α , X0, Yj0

(detX0)
1
n , s.t. α > 0, X0 > 0, (26) and (27). (28)

Solving the convex optimization problem (28), the optimal solutions X0,Yj0,( j =
1, · · · ,N) and α are determined. The matrices X and Yj can be found from (23).
Then the optimal terminal penalty matrix P, the terminal region Ω , and the terminal
feedback law can be determined by Theorem 3. Sometimes solving the optimization
problem (28) gives a very large terminal penalty such that the effect of the integral
term in the performance index (3) almost disappears. A very strong penalty on the
terminal states may have a negative influence on achieving the desired performance
which is specified by the finite horizon cost [2]. The trade off between a large ter-
minal region and good control performance can be made by limiting the norm of
the matrix P [3]. Since P = X−1 = α(X0)−1, it can be achieved by imposing the
requirement that α has to be less than or equal to a given constant.

5 A Numerical Example

In this section, the proposed method is applied to a continuous stirred tank reac-
tor(CSTR) [14]. Assuming constant liquid volume, the CSTR for an exothermic,
irreversible reaction, A→B, is described by the following dynamic model based on
a component balance for reactant A and an energy balance:
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ĊA =
q
V

(CA f −CA)− k0 exp(− E
RT

)CA,

Ṫ =
q
V

(Tf −T )− �H
ρCp

k0 exp(− E
RT

)CA +
UA

VρCp
(Tc −T ).

here CA is the concentration of the reactor, T is the reactor temperature, and Tc is
the temperature of the coolant steam. The parameters are q = 100 l/min, V = 100 l,
CA f = 1 mol/l, Tf = 350 K, ρ = 103 g/l, Cp = 0.239 J/(g K), k0 = 7.2×1010 min−1,
E/R = 8750 K, �H = −5×104 J/mol, UA = 5×104 J/(min K). Under these con-
ditions the steady state is Ceq

A = 0.5 mol/l, T eq
c = 300 K, and T eq = 350 K, which

is an unstable equilibrium. The temperature of the coolant steam is constrained to
250 K≤ Tc ≤ 350 K. The concentration of the reactor has to satisfy 0≤CA ≤ 1 mol/l,
and the temperature of the reactor is constrained to 300 K ≤ T ≤ 400 K. The objec-
tive is to regulate the concentration CA and the reactor steam temperature T around
the steady state via NMPC by using the temperature of the coolant as an input, while
the constraints have to be hold. The dynamics of the CSTR can be expressed by the
parameter-dependent weighted linear model of the nonlinear system (10) with A1 =[−23.7583 0

4761.2 −739/239

]
, A2 =

[−1.0155 0
3.2433 −739/239

]
, B1 = B2 =

[
0 500/239

]T
.

The weighting matrices of the stage cost are Q =
[

1
0.5

1
350

]
and R = 1

300 , respec-
tively.

The volume of the terminal region of the proposed method is compared to pre-
vious results which were based on a Lipschitz approach [2]. In order to preserve
a dominating effect of the integral part in the cost function, we impose the con-
straint α ≤ 5 on the optimization problem (28). The terminal region given by [2]
is represented by the dashed ellipsoid, and the terminal region yielded by the PLDI

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
300

310

320

330

340

350

360

370

380

390

400

x
1

x 2

Fig. 1 Comparison of the terminal region
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approach with parameter-dependent terminal control law is shown by the solid el-

lipsoid in Figure 1. The associated terminal penalty is P =
[

15.2100 0.0395
0.0395 0.0005

]
.

6 Conclusions

In this paper we propose a method to expand the terminal region which replaces the
time invariant linear state feedback control law by a parameter-dependent terminal
control law. The new algorithm provides an extra degree of freedom to enlarge the
terminal set. The problem of maximizing the terminal region is formulated as an
LMI based optimization problem. It is shown that, compared to the algorithms with
static linear terminal control law, a parameter-dependent terminal control results in
a larger terminal region, which is confirmed by a numerical example.
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2. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998)

3. Chen, W.H., O’Relly, J., Ballance, D.J.: On the terminal region of model predictive con-
trol for non-linear systems with input/state constraints. Int. J. Control Signal Process 17,
195–207 (2003)

4. Yu, S.-Y., Chen, H., Zhang, P., Li, X.-J.: An LMI optimization approach for enlarging
the terminal region of NMPC. Acta Automatica Sinca 34, 798–804 (2008)

5. Cannon, M., Deshmukh, V., Kouvaritakis, B.: Nonlinear model predictive control with
polytopic invariant sets. Automatica 39, 1487–1494 (2003)

6. Ong, C., Sui, D., Gilbert, E.: Enlarging the terminal region of nonlinear model predictive
control using the supporting vector machine method. Automatica 42, 1011–1016 (2006)

7. Yu, S.-Y., Chen, H., Li, X.-J.: Enlarging the terminal region of NMPC based on T-S fuzzy
model (submitted, 2007)

8. Chen, H.: Stability and Robustness Considerations in Nonlinear Model Predictive Con-
trol. usseldorf: Fortschr.-Ber. VDI Reihe 8 Nr. 674, VDI Verlag (1997)

9. Khalil, H.: Nonlinear Systems (third version). Prentice-Hall, New York (2002)
10. Boyd, S., El Ghaoui, L., Feron, E., Balakishnan, V.: Linear Matrix Inequalities in System

and Control Theory. SIAM, Philadelphia (1994)
11. Scherer, C.W., Weiland, S.: Linear Matrix Inequalities in Control, DISC Lecture note,

Dutch Institute of Systems and Control (2000)
12. Gao, X.: Control for T-S fuzzy systems based on LMI optimization. Dissertation, Jilin

University (2006) (in Chinese)
13. Nesterov, Y., Nemirovsky, A.: Interior point polynomial methods in convex program-

ming. SIAM Publications, Philadelphia (1994)
14. Magni, L., Nicolao, G.D., Scattolini, R.: A stabilizing model-based predictive control

algorithm for nonlinear systems. Automatica 37, 1351–1362 (2001)


	Introduction
	Preliminaries
	Enlarging the Terminal Region of Quasi-infinite Horizon NMPC
	Polytopic Linear Differential Inclusions
	Terminal Region of NMPC Based on PLDI

	Optimization of the Terminal Region
	A Numerical Example
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


